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Abstract 
 

A reflection on the characteristics of the ATM  traffic source models which are characterized by both 

burstness and a high correlation at the entry point when transmitting packet data has been central to studies 

in queueing theory in particular.  The interest of this study is being tailored to the need for performance 

evaluation and optimization in certain network switches. This paper analyzes a simple data traffic system 

undergoing the typical cycle period distribution with a deterministic server and Markov Modulated Bernoulli 

Process (MMBP)  at the arrival on a discrete time scale. With  certain assumptions in place, the next busy 

period is considered given that it delays when the system is opened at the entry point. 

The analysis is used to demonstrate the influence of the utility parameter ρ in an idle period distribution of 

an MMBP arrival flow. 

Keywords:  Diffusion, Bursty Traffic, Idle Period Distribution,  Discrete Time, Ergodicity. 
 

 
1.  Introduction 

 
The issue that surrounds the Asynchronous Transfer Mode (ATM) network has not barred its usefulness 

in Broadband-Integrated Services Digital  Networks (B-ISDN)  for wide range of bandwidth requirements, 

bit rate variations (Variable Bit Rate traffic) and certain other phenomena within the network connection. 

The packetized traffic network has kept a focus on the peak cell rate [3] and [6] with the fact that the ATM 

has built-in mechanisms that allows for provision an appreciable quality of service delivery at different times 

and on different traffic systems. However, one of the major challenges for ATM  networks aside statistical 

multiplexing, has been the cycle period distribution.   This distribution  mainly rejuvenates the server and 

an ease in traffic flow within  a network.  Under certain conditions, the ATM  traffic is unpredictable, it is 

bursty (e.g., data services), and has a high correlation at the arrival point. This causes unease in the system 

particularly when trying to model the system network with the model it worked with in a last study. Within 

the debate of ATM  traffic characterization, several parameters  have been introduced (e.g., peak/mean cell 

rate ratio, burst length, etc.) and following [6] in an attempt to get a much approximate quality of service 

guarantee, the Markov Modulated Process is convincingly appropriate in the discrete-time (Markov chain) 

sense (DTMC).  We follow the approach of the idle period distribution;  the time just before the arrival of the 

first customer or just after the departure of the last customer in the system. The organization of this paper 

is as follows: a quick review of literature in section 2; a frame of the model and its mechanism in section 2; 

what follows is a mathematical construct of the problem, results and discussion; asymptote of the process 

and; a conclusion and recommendation for section 3, 4 and 5. 
 

 
2.  Model  Description 

Let Vt  be an IID sequence of random variable of the length of idle period distribution  in an n−diffusion 

policy system whose arrival process is MMBP into a deterministic service and, upon arrival in a complete 

cycle period distribution  system. This diffusion takes proportions of available jobs from an ith to (i + 1)th 

phase with a sharing formula commensurate the decreasing buffer size as available  jobs complete the process 
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in the system. This n system policy measures up to the time when a filter diffuses out the available job into 

the next buffer for an onward forward process in the direction towards exiting the system. With the system 

closed at the entry point until the next idle period, the server is busy for k time until the last job is served. 

On a fresh arrival, the time until the next idle period, the job passes into n servers until it exits the system 

where it needs compete for the available space because the buffer is smaller as n goes large, the job at ci  is 

an implication of the fact that it was passed from ci−1 , i ≥ 2 whereas it is either empty or has a residual 
portion of the leftover from the last dispatch which is a flow in from ci−2 . If ci+2  is idle in a busy system 

 
just before an arrival into it, no sooner is the buffer is occupied if the flow is yet to get to ci+  and hence the 
idle period is of length ρ × Vn−(i+2)  upon awaiting the flow of the approaching job (ρ is the system utility 

 
measured as the ratio of both rates of arrival and service response in the system). Thus, we see that the 
next idle period is defined for k ≥ n for the spread and diffusion through the system channels. 

Hence, we consider the system at departure instants and its matrix  probability  into transition which are 

given as; 
 
 
 
 

where 

 
P =  

ON 

OF F 

ON  OF F r 
α  1 − α 

1 − β β 

l 

(1) 

a= Pr{an arrival at time t—an arrival at t-1} 
1 − a = Pr{an arrival at time t—no arrival at t-1} 
b = Pr{no arrival at time t—no arrival at t-1} and, 
The steady state arrival flow into the system is 

1 − a 

 

 
 
 
 

1 − b 
Π1 = 

2 − a − b 
, Π2 = 

2 − a − b 
(2)

 

P ∞ = lim  P n 

n→∞ 

With  section 2 in place, let X (t) be an i.i.d.  random variable connoting a discrete time counting process 

of an idle period at service point (general) given arrival is Markov Modulated Bernoulli Process (MMBP) 

with k−phase diffusion, we express the probability in (2) as 
r 

a (1 − a)v + (1 − a)(1 − v) 
l 

(3)
 

P = 
1 − b b 

 

v is the probability that at a certain instant t, the server is idle and there is no approaching customer. 

Under the limiting  distribution  condition, we have that 

π  = 
1 − a 

(4)
 

2  
2 − a − b 

becoming 
 

1 − a 

 

1 − a 
 
 

it follows that (5) gives 

π2 = 
2 − a   − b 

vt + 
2 − a   − b 

(1 − vt )  (5)
 

 

1 − a
 
 

π2 = 
2 − a

   
− b 

× 1
 

Suppose vt  and 1 − vt  are not symmetrical in a sense, hence, they are asymptotic. For a large convergence 
into steady state, it possesses a discrete jump process Vt , for large t, the quantity Vt  approaches 1. Now 
with attention on Vt , it follows that 

1 − a 
π2 = 

2 − a   − b 
{Vt } (6)

 
  

1 − a 
π2 = 

2 − a   − b 
{Vt+0 , Vt+1 , Vt+2 , ...Vt+k } (7)
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1 2 3 

 
 
 
 
 
 

 
where u = t + k and k ∈ 

� +
 

 

π  = 
1 − a 

{V  , V , V , ...V } (8) 
− − 

but {Vt } is a growth function, we define that 
 

 

Vt  = e(1−φ)t (9) 

  

β(s) = e−st dVt (10) 
 

t  = B∗
 [1 − (s − φ)] (11) 

With  the consideration of an arrival epoch, just after the completion of an idle period, it follows from (6) 

that 

π  = 
1 − a 

{(1 − V ), (1 − V ), (1 − V ), ...(1 − V )}  (12) 
− −   

V ∗∗ e−st
 dVt t = 1, 2, ...u (13) 

 

Let V ∗(s) be the LST of the DF of the length of I of an idle period. Since φ is a part function of the service 

time distribution,  it is defined when the last customer has left the system. 

Let B be the discrete count of the number just before the first arrival goes into service. We then have that, 

V = y + V 1 + V 2 + V 3 + ... + V B (14) 

Each B are mutually independent RV and of the same distribution 
 

E[e−sy ] = E[e−s(y+V 
 
1 +V 

 
2 +V 

 
3 +...+V 

 
) ] (15) 

 

E[e−sy ] = e−sy E[e−sV 
 

]E[e−sV
 

 

]E[e−sV
 

 

]...E[e−sV
 

 
B 

] (16) 
 
 

Unconditioning on y, we have 

E[e−sy ] = e−sy [V ∗(s)]k  (17) 
 

 

E[e−sy ] = e−sy [V ∗(s)]k [T ] × Pr{noarrival} (18) 

 

where T = sojourn time of the last customer at the end of a busy period, which kick starts the idle period. 

E[e−sy ] = e−sy [V ∗(s)]k [Wl × B∗(s)] Pr{noarrival} (19) 

 

where Wl  is the waiting time of the last customer 

E[e−sy ] = e−sy [V ∗(s)]k T ( k 
)k (s) × 

 

With the assumption that the system is stable, we have that 

1 − a 

2 − a − b 
× e−φy (20) 

 

 
 
 

for x = 1. 

P r{N o − arrivals} = (       1 − a   
)x 

2 − a − b 
(      1 − b    

) 
2 − a − b 

 
1−x 

 
(21) 

E[e−sy ] = e−sy [V ∗(s)T k (s)]k  × 
 

after much simplification, (20) becomes 

1 − a 
2 − a − b 

× e−φy (22) 

 
 
 

for values of k, we have 

 

E[e−sy ] = e−[s+φ−T V̇ ∗ (s)]y  (23) 
 

 
   ∞ 

E[e−sy ]dy = I ∗[s + φ − φ(T V ∗(s))∗]  (24) 
0 
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Table 1: Waiting time for varing φ at different stages 
 

stage φ=0.1 φ=0.2 φ=0.3 φ=0.4 φ=0.5 φ=0.6 φ=0.7 φ=0.8 φ=0.9 φ=1.0 

1 0.095 0.140 0.185 0.230 0.275 0.320 0.365 0.410 0.455 0.500 

2 0.140 0.180 0.220 0.260 0.300 0.340 0.380 0.420 0.460 0.500 

3 0.185 0.220 0.255 0.290 0.325 0.360 0.395 0.430 0.465 0.500 

4 0.230 0.260 0.290 0.320 0.350 0.380 0.410 0.440 0.470 0.500 

5 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 

6 0.320 0.340 0.360 0.380 0.400 0.420 0.440 0.460 0.480 0.500 

7 0.365 0.380 0.395 0.410 0.425 0.440 0.455 0.470 0.485 0.500 

8 0.410 0.420 0.430 0.440 0.450 0.460 0.470 0.480 0.490 0.500 

9 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 

10 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
 
 

3.  Numerical and Analytic Results with  Discussion 
 

Response time is the time it takes for the server to respond to n number of customers in N time interval. 
 

1. The value W shows stability  as z goes to zero, and it is turbulent as it goes further from zero. 

2. For a constant s, the plot is asymptotically about z and W . 

3. There is a sharp spike between s ∈ (0, 0.25) signifying longer waits at z near its peak. This avalanche 
is conspicuous  as ρ tends large. 

4. The relationship between W and s tends to a negative gradient as s is increased. 

5. The value  W shows a sign of stability  with  small s with  a constant  z and a negative  slope with  a 

constant s. 

6. Overall, the plot seems disjoint as the utility factor tends to 1; this is exhibited from the avalanche 

which is a result of the system being undefined at certain points. 

since φ is a function of T ∗V ∗(s) and our model works in the similitude of the M/G/1 queue system, we 

know from literature that 
 

 
 

where 0 < ρ < 1. See [5]. 

T = B∗(s) 
s(1 − ρ) 

s − λ − λB∗(s) 
(25) 

(25) is defined from (22) to (24), hence we ascertain that  the introduction  of the HOV intervention like 

congestion control, increases the traffic prediction when accompanied by the plausibility of impediment to 

the free flow traffic and an enhancement to the priority  lane. 
 
 

 
 

Figure 1: Idle period with  ρ = 0.10 Figure 2: Idle period with  ρ = 0.25 
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Figure 3: Idle period with  ρ = 0.50 Figure 4: Idle period with  ρ = 0.75 

 
 

Table 2: Euclidean distance between φ of different stages 
 

stage 1 2 3 4 5 6 7 8 9 10 

Eulidean Distance 0.7597 0.6753 0.5909 0.5065 0.4220 0.3376 2532 0.1688 0.0844 0.00 
 
 

Clearly, Table 1 is symmetrical and the values for φ =0.1 progressively attains that for the first stage at 

varying φs across column. It is not strange that for a shorter span, the range of waiting time for the process 

to begin is asymptotic about zero. 

0.7597 is the Euclidean distance for the stage one in Table 1 and as we can see, the width as the stages 

progresses shrinks until 0.00. 
 

 
4.  Ergodicity  of the Process 

 
Recall that in the n bureaucracy in our system, a packet spends a unit time slot moving from bureaucracy 

i to i + 1.   Upon an arbitrary  time t it would spend (n − t) time slot in the system, given that  the 
deterministic service time of one time slot.  Let the queueing system occupancy  be defined by N (t) = 
N0 (t), N1 (t), N2 (t), ..., Nn (t), given that  each bureaucracy has equal and fixed buffer size. We  introduce 

independent random variables ξ(t) and η(t), t = 0, 1.... assuming the values 0 and 1, by means of equalities 
[8] 

P r(ξ(t) = 1) = p1 ,   P r(η(t) = 1) = p2 ,             t = 0, 1, 2, ...                              (26) 

In this system, one server and the (i − 1)th  input flow interact only with the it h queue at each step. At 

the tth step, a request from the input independently arrives at the first queue with probability p1 and if the 
server contains a request at the tth step, then it independently completes service with probability p2 and, 
instead of the processed request, accesses the first queue for a new request. If the server is idle at the tth 

step, then it accesses the first queue for a new request with probability 1 rather than p2 . 

ξi (t) = 1, ηi (t) can only be p given that the server at i + 1 is rendering a service. Thus for some ci  = 0, the 
capacity of the system at an arbitrary  phase would bypass the queue capacity cn . Though, 

cn+1 (t) = cn+2 (t) = cn+3 (t) = ... = cn+m (t) = 0, t ≥ 0 

 

Without loss of generality, based on the system, we assume that the random  sequence ξ(t) and η(t), t = 0, 1.... 

are controlled by the arrival of requests in the system. By the virtue of this base knowledge,  we can say 

that the spread is uniformly distributed and, thus 

c1 (t) ≥ c2 (t) ≥ c3 (t) ≥ ... ≥ cn (t), t ≥ 0 
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− 

 
 
 
 
 
 

 
For a more general time frame t1 < t2 < t3 < ... < tn , we define the event A(t1 ) = P r{ξ(t1 ) = 1, η(t1 ) = 
1}, A(t2 ) = P r{ξ(t2 ) = 1, η(t2 ) = 1}, ... Then, we can say that from (26) 

A(ti+1 ) − A(ti )
 

 

 
hence follows 

M A0,t ≥ p1 p2 
≥ 1 +  A (27) 

1 
A(ti+1 ) − A(ti ) 

p p ≤M  A0,t ≤  A  (28) 
1  2 

In similar manner, the flow proportion is given as 

  
N (tt+1 ) − N (tt ) 

  

 

 
  

NP −K 

 
< N  (29)

 

p1 p2 

−
 

 

where NP −K is the average size in a specific queue from Pollaczek Khinchine mean-value theorem, and, 

M A0,t is the moment of A(t). 
 

 
5.  Conclusion 

 
In this paper, the approach to the cycle period distribution  for a Markov Modulated Bernoulli (arrival) 

Process MMBP is presented. This approach is a natural extension of a time-varying arrival event as applica- 

ble in a more general setting where an arrival of a packetized data is delayed via some bottleneck protocols 

at the input.  With the system still maintaining its utility and defined functions, it is useful to find out what 

happens in the system at such times. 

The methodology developed here is valid for a discrete-time queueing scheme and a Continuous-Time Markov 

Chain (CTMC),  and on this base we make the performance comparison for the system utility where a and 

b are kept at 0.4 and 0.6 respectively ρ = 0.1, 0.25, 0.50 and 0.75. 

As the mean service time increases, there is a slow decay in the idle period distribution,  while the parameter 

of the Idle period distribution steeps and gradually flattens. The slope of the steep is smaller as ρ increases. 
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